

.
Charles Sturt University - TEQSA Provider Identification: PRV12018 (Australian University). CRICOS Provider: 00005F

 Page 1 of 9

School of Business
Faculty of Business, Justice, and Behavioural Sciences

ADDITIONAL ASSIGNMENT – 202475B ITC228 Programming in Java

Due Date: Wednesday, 5th March

Value: 30%

Submission: Email to FOBJBS-Subject-Admin@csu.edu.au

TASK:
Task 1 Computing Future Investment Value

value: 8 marks

Write a method that computes future investment value at a given interest rate for a specified

number of years. The future investment is determined using the following formula:

futureInvestmentValue =

 investmentAmount x (1 + monthlyInterestRate)numberOfYears*12

Use the following method header:

public static double futureInvestmentValue(

 double investmentAmount, double monthlyInterestRate, int years)

For example, futureInvestmentValue(10000, 0.05/12, 5) returns 12833.59.

Write a test program that prompts the user to enter the investment amount (e.g., 1000) and the

interest rate (e.g., 9%) and prints a table that displays future value for the years from 1 to 30, as

shown below:

The amount invested: 1000

Annual interest rate: 9%

Years Future Value

1 1093.80

2 1196.41

...

29 13467.25

mailto:FOBJBS-Subject-Admin@csu.edu.au

.

Charles Sturt University - TEQSA Provider Identification: PRV12018 (Australian University). CRICOS Provider: 00005F

 Page 2 of 9

School of Business
Faculty of Business, Justice, and Behavioural Sciences

30 14730.57

Analysis & Design: Describe the problem including input and output in your own words and the

major steps for solving the problem.

Task 2 Validating Credit Cards

value: 10 marks

Problem Description:

Credit card numbers follow certain patterns. A credit card number must have between 13 and 16

digits. It must start with:

4 for Visa cards

5 for Master cards

37 for American Express cards

6 for Discover cards

In 1954, Hans Luhn of IBM proposed an algorithm for validating credit card numbers. The algorithm

is useful to determine if a card number is entered correctly or if a credit card is scanned correctly by

a scanner. Almost all credit card numbers are generated following this validity check, commonly

known as the Luhn check or the Mod 10 check, which can be described as follows (for illustration,

consider the card number 4388576018402626):

1. Double every second digit from right to left. If doubling of a digit results in a two-digit number, add

up the two digits to get a single-digit number.

2 * 2 = 4

2 * 2 = 4

4 * 2 = 8

1 * 2 = 2

6 * 2 = 12 (1 + 2 = 3)

5 * 2 = 10 (1 + 0 = 1)

8 * 2 = 16 (1 + 6 = 7)

4 * 2 = 8

2. Now add all single-digit numbers from Step 1.

4 + 4 + 8 + 2 + 3 + 1 + 7 + 8 = 37

.

Charles Sturt University - TEQSA Provider Identification: PRV12018 (Australian University). CRICOS Provider: 00005F

 Page 3 of 9

School of Business
Faculty of Business, Justice, and Behavioural Sciences

3. Add all digits in the odd places from right to left in the card number.

 6 + 6 + 0 + 8 + 0 + 7 + 8 + 3 = 38

4. Sum the results from Step 2 and Step 3.

37 + 38 = 75

5. If the result from Step 4 is divisible by 10, the card number is valid; otherwise, it is invalid. For

example, the number 4388576018402626 is invalid, but the number 4388576018410707 is valid.

Write a program that prompts the user to enter a credit card number as a long integer. Display

whether the number is valid or invalid.

Here are sample runs of the program:

Sample 1:

Enter a credit card number as a long integer: 4246345689049834

4246345689049834 is invalid

Sample 2:

Enter a credit card number as a long integer: 4388576018410707

4388576018410707 is valid

Analysis & Design: Describe the problem including input and output in your own words and the

major steps for solving the problem.

Task 3 University Subject

Value: 12 marks

For this task you will create a Subject class, whose instances will represent the subjects for study at a

university. A subject will have a name, just a String, and a subject code, which is a six-

character String. The first three characters of a subject code are alphabetic and the last three are

numeric. The first three characters define the subject's discipline area. A subject code must be

unique but do not need to check subject name for uniqueness.

You will also write a TestSubject class to test the use of your Subject class. In particular this will

maintain an array of subjects. In order to manage the uniqueness of the subject codes, your program

will need to display information about existing subject codes as well as checking that any new subject

code supplied by the user is not the same as any existing subject code.

The following state and functionality should be provided for the Subject class:

• Two fields will hold the subject’s name (e.g. Programming in java 1) and the six-character

subject code (e.g. ITC228).

.

Charles Sturt University - TEQSA Provider Identification: PRV12018 (Australian University). CRICOS Provider: 00005F

 Page 4 of 9

School of Business
Faculty of Business, Justice, and Behavioural Sciences

• A constructor will allow a name and a new, validated subject code to be provided when a

new subject is created.

• Getters will provide access to the attributes.

• An accessor method called codeMatches will return a boolean value indicating if the

subject's code matches the string argument provided. "Matches" is used here in the same

sense as for the matches method of the String class.

• A toString method will return a string containing the subject code and subject name.

To assist with managing subject codes and their uniqueness you will provide the Subject class with

some class methods as follows (you may add more method9s) if you need):

• An isValidCode method will accept a string that is a possible new subject code, and return a

boolean indicating whether it satisfies the structural requirements for a subject code (i.e.

first three characters are letters and last three characters are digits).

• A codeExists method will accept an array of Subject objects and a possible new subject code.

It will return a boolean indicating whether that code has already been allocated to one of the

subjects in the array.

Your TestSubject program will perform the following sequence of actions, using good design

techniques such as in the appropriate use of methods:

• An initial array of Subject objects will be created from any data in a file that was previously

saved by the program (not using programming in java, just open a text file and write subject

name and code and then save the file). You need to read those data from the file and process

other requirements (using java programming)

• The user interaction will then proceed to allow the user to add one or more new subjects to

the array. If the user wishes to add new subjects, the existing subjects should be displayed.

Each subject code entered by the user should be checked against the existing subject codes.

The user can enter any new subject, but only non-existing subject codes and their names

should be added in the subject list, otherwise, give opportunity to enter new code if the

entered subject code already exists in the list. The user should be given the choice of

repeating the processing for more subjects.

• When the user has finished adding subjects, and only if subjects have indeed been added,

the program will overwrite the data file with the updated data if anyone open the file using

file explorer, he/she can see all subjects including the newly added subjects.

You need to submit a single zip file containing:

1. All java and class files

2. A pdf file, analysis & design descriptions, a snapshot of the program output, and UML design

(where required, see marking guide)

MARKING CRITERIA:
Marking guide of the specific tasks:

.

Charles Sturt University - TEQSA Provider Identification: PRV12018 (Australian University). CRICOS Provider: 00005F

 Page 5 of 9

School of Business
Faculty of Business, Justice, and Behavioural Sciences

Assessment 3 (Total marks 30)

Task 1 (total marks 8)

Criteria Marks HD DI CR Pass

a. Execution:

Program

launches,

executes and

terminates

without crashing;

program executes

as specified.

1.0 Provide java

file and it

executes

without

crashing

towards

intended

output (up

to 1.0)

Provide java

file and it

executes

without

crashing

towards

intended

output but

one method

is missing

(up to 0.85)

Provide java file

and it executes

without crashing

towards

intended output

but one/two

methods are

missing (up to

0.75)

Provide java file

and it executes

without

crashing

towards

intended

output but a

significant

number of

methods are

missing (0.5)

b. Program

design &

implementation:

An appropriate

main method

with the inputs,

processing and

outputs specified

in the question

4.0 Execute and

compute

the correct

population

with proper

java

structure,

logical flow

for any

value

and correct

outputs (up

to 4.0)

Execute and

compute

the correct

population

with proper

java

structure,

logical flow

for any

value

and outputs

with minor

errors (up to

3.0)

Execute and

compute the

population for

all given

examples

correctly (up to

2.5)

Execute and

compute the

population

correctly for

some cases of

the given

examples (up

to 2.0)

c. Presentation:

Code uses good

style (indentation,

comments)

1.0 Maintain

proper

naming

convention

of all

variables,

proper

indentation

on each

block/line

of code(s),

and provide

important

Maintain

proper

naming

convention

of all

variables,

proper

indentation

on each

block of

codes, and

provide

comments

Provide a

number of

variable names

but not all by

maintaining

proper naming

convention,

occasionally

proper

indentation, and

comments on

only important

Provide

arbitrary

variable names,

no proper

indentation,

and very few

comments (up

to 0.5)

.

Charles Sturt University - TEQSA Provider Identification: PRV12018 (Australian University). CRICOS Provider: 00005F

 Page 6 of 9

School of Business
Faculty of Business, Justice, and Behavioural Sciences

inline

comments

(up to 1.0)

on only

important

calculation

(up to 0.75)

calculation (up

to 0.65)

d. Submission:

The documents

with all

components (java

code, testing

outputs and

analysis & design

descriptions)

2.0 Provide all

components

with

convincing

various

output and

analysis &

design

descriptions

(up to 2.0)

Provide all

components

with various

output and

analysis &

design

descriptions

(up to 1.75)

Provide all

components (up

to 1.5)

Provide all

components

(up to 1)

Task 2 (total marks 10)

Criteria Marks HD DI CR Pass

a. Execution:

Program

launches,

executes and

terminates

without crashing;

program executes

as specified.

1.0 Provide java

file and it

executes

without

crashing

towards

intended

output (1.0)

Provide java

file and it

executes

without

crashing

towards

intended

output with

almost all

options are

included

(0.75)

Provide java file

and it executes

without crashing

towards

intended output

but few options

are missing

(0.65)

Provide java file

and it executes

without

crashing

towards

intended

output but a

significant

number of

options are

missing (0.5)

b. Program

design &

implementation:

An appropriate

main method

with the inputs,

processing and

6.0 Execute and

compute

the correct

population

with proper

java

structure,

logical flow

Execute and

compute

the correct

population

with proper

java

structure,

logical flow

Execute and

compute the

population for

all given

examples

correctly (up to

4)

Execute and

compute the

population

correctly for

some cases of

the given

.

Charles Sturt University - TEQSA Provider Identification: PRV12018 (Australian University). CRICOS Provider: 00005F

 Page 7 of 9

School of Business
Faculty of Business, Justice, and Behavioural Sciences

outputs specified

in the question

for any

value

and correct

outputs (up

to 6.0)

for any

value

and outputs

with minor

errors(up to

5.0)

examples (up

to 3)

c. Presentation:

Code uses good

style (indentation,

inline comments)

1.0 Proper

indentation

and

comments

in each

block and

major lines

(up to 1.0)

Proper

indentation

and

comments

in each

block and

major lines

(up to 1.0)

Proper

indentation and

comments in

each block and

major lines (up

to 1.0)

Provide sample

outputs (up to

0.5)

d. Submission:

The documents

with all

components (java

code, testing

outputs and

analysis & design

descriptions)

2.0 Provide all

components

with

convincing

various

output and

analysis &

design

descriptions

(up to 2.0)

Provide all

components

with various

output (up

to 1.75)

Provide all

components (up

to 1.5)

Provide all

components

(up to 1.0)

Task 3 (total marks 12)

Criteria

Marks HD DI CR Pass

a. Execution:

Program

launches,

executes and

terminates

without crashing;

program executes

as specified.

1.0 Provide java

file and it

executes

without

crashing

towards

intended

output (up

to 1.0)

Provide java

file and it

executes

without

crashing

towards

intended

output with

almost all

options are

included

(0.75)

Provide java file

and it executes

without crashing

towards

intended output

but few options

are missing

(0.65)

Provide java file

and it executes

without

crashing

towards

intended

output but a

significant

number of

options are

missing (0.5)

.

Charles Sturt University - TEQSA Provider Identification: PRV12018 (Australian University). CRICOS Provider: 00005F

 Page 8 of 9

School of Business
Faculty of Business, Justice, and Behavioural Sciences

b. UML design:

For the Subject

class

1.0 UML with

all

components

and their

modifier,

argument,

and return

type (up to

1.0)

UML with all

components

and their

modifier,

argument,

and return

type (up to

1.0)

UML with all

components and

their modifier,

argument, and

return type (up

to 1.0)

UML with all

components

(up to 0.5)

c. Program

design &

implementation:

Subject (4),

TestSubject (2),

and file

read/write (2)

classes are

implemented as

specified,

showing good

logic.

8.0 Implement

and

integrate

Subject and

TestSubject

classes with

all methods

using file

read &

write

maintaining

logical flow

(8)

Implement

and

integrate

Subject and

TestSubject

classes with

all methods

using file

read & write

with minor

error (6-7)

Implement and

integrate

Subject and

TestSubject

classes with

majority of the

methods using

file read & write

(4.5-5.5)

Implement and

integrate

Subject and

TestSubject

classes with

some methods

using file read

& write (4.0)

d. Presentation:

Code uses good

style (indentation,

comments)

1.0 Maintain

proper

naming

convention

of all

variables,

proper

indentation

on each

block/line

of code(s),

and provide

important

inline

comments

(up to 1.0)

Maintain

proper

naming

convention

of all

variables,

proper

indentation

on each

block of

codes, and

provide

comments

on only

important

calculation

(up to 0.75)

Provide a

number of

variable names

but not all by

maintaining

proper naming

convention,

occasionally

proper

indentation, and

comments on

only important

calculation (up

to 0.65)

Provide

arbitrary

variable names,

no proper

indentation,

and very few

comments (up

to 0.5)

.

Charles Sturt University - TEQSA Provider Identification: PRV12018 (Australian University). CRICOS Provider: 00005F

 Page 9 of 9

School of Business
Faculty of Business, Justice, and Behavioural Sciences

e. Submission:

The documents

with all

components (java

code and testing

outputs)

1.0 Provide all

components

with

convincing

various

output (up

to 1.0)

Provide all

components

with various

output (up

to 0.75)

Provide all

components (up

to 0.65)

Provide all

components

(up to 0.5)

